
 

Abstract-° With the increasing importance of network 
protection from cyber threats, it is requested to develop a multi-
gigabit rate pattern-matching method for protecting against 
malicious attacks in high-speed network. This paper devises a 
high-speed deep packet inspection algorithm with TCAM by 
using an m-byte jumping window pattern-matching scheme. The 
proposed algorithm significantly reduces the number of TCAM 
lookups per payload by m times with the marginally enlarged 
TCAM size which can be implemented by cascading multiple 
TCAMs. Due to the reduced number of TCAM lookups, we can 
easily achieve multi-gigabit rate for scanning the packet payload. 
It is shown by simulation that for the Snort rule with 2,247 
patterns, our proposed algorithm supports more than 10 Gbps 
rate with a 9 Mbit TCAM. 

I. INTRODUCTION 

Recently, a lot of various cyber threats such as worms, 
viruses, spam-mails, and hacking have appeared with the 
explosive increase of Internet usage. When viruses hidden in 
the e-mail propagate quickly themselves, they will cause 
various kinds of troubles to users, hosts, and networks. A new 
type of dangerous threats to security today is the worm. For 
instance, the SQL Slammer, one of the first flash worms 
unleashed on the Internet in January 2003, caused significant 
disruption to networks around the world [1,2]. Hence, the 
importance of developing network security technologies and 
various secure solutions that protect data, system, and 
networks from these cyber attacks has become invaluable. 
Network Intrusion Detection Systems (NIDSs) monitor every 
packet in the network to detect malicious attacks. In a high-
speed network, an NIDS may be overloaded as the packet 
arrival rate becomes high. Hence, the hardware-based 
approach of implementing the NIDS will be appropriate in 
order to support the high-speed network. The functions of the 
NIDS are often performed by secure routers in these days. 
The secure router usually supports multi-gigabit rate such as 
10 Gbps Ethernet and OC-192. Therefore, multi-gigabit rate 
secure routers need 10Gbps scan rate for detecting malicious 
signatures from the packets.  

In this paper, we suggest a 10Gbps deep packet inspection 
algorithm that can be used with Ternary Contents 
Addressable Memory (TCAM). Usually, the search capability 
of TCAM outperforms general purpose memories. TCAM can 
provide an answer for searching a packet of length n, in a 
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deterministic time of O(n) TCAM lookups, because one 
TCAM lookup is needed for every byte position in the packet 
[3,4]. Since the TCAM lookup time is known and fixed, we 
need to minimize the number of TCAM lookups per packet to 
support the multi-gigabit rate secure router. We suppose a 
TCAM-based pattern- matching algorithm which decreases 
the number of TCAM lookups per packet by means of 
performing a TCAM lookup operation per multi-bytes in a 
packet payload. We call this algorithm as the jumping window 
pattern-matching scheme. One pattern will generate multiple 
TCAM entries shifted from 0 to m–1, if the size of the 
jumping window is m. In our algorithm, TCAM lookups for 
searching a packet of length n, is O(n/m). Therefore, by 
reducing the number of TCAM lookups with the proposed 
jumping window scheme, multi-gigabit rate can be supported 
for secure routers. 

The remainder of the paper is organized as follows. We 
review related work in Section 2, and summarize the 
characteristics of TCAM in Section 3. Section 4 presents 
algorithms to map the multiple patterns into TCAM and 
efficiently scan packets at high speeds. Section 5 describes 
the analysis and the simulation results of our algorithm. 
Finally, we conclude the paper in Section 6. 

II. RELATED WORK 

Signature-based intrusion detection schemes are used to 
detect malicious signatures which may appear anywhere in 
the packet payload by scanning the packet payload. These 
signatures are stored in the searching table as multiple 
patterns. References [5] and [6] provide fast algorithms to 
search multiple patterns. Reference [5] suggests a multiple-
pattern search algorithm, a set-wise Boyer-Moore-Horspool 
(SBMH) algorithm, which combines the one-pass approach of 
Aho-Corasick [7] with the skipping feature of Boyer-Moore 
[8] as optimized for the average case by Horspool [9]. 
Reference [6] suggests a fast algorithm for multi-pattern 
searching. It builds three tables at the preprocessing stage: a 
SHIFT table, a HASH table, and a PREFIX table. The SHIFT 
table is similar, but not exactly the same, to the regular shift 
table in the Boyer-Moore type algorithm. It is used to 
determine how many characters in the text can be shifted 
(skipped) when the text is scanned. The HASH and PREFIX 
tables are used when the shift value is 0. Besides [5] and [6], 
[10] and [11] provide multiple pattern-matching algorithms 
for the payload-sensitive packet-filtering system. The multiple 
pattern-matching algorithms [5][6][10][11] use software 
approaches. However, software-based pattern-matching is not 
able to inspect all packets in the high-speed network [12]. 
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Reference [13] proposed a hardware-based technique using 
parallel bloom filters which could detect strings in streaming 
data. The proposed scheme builds a bloom filter for each 
possible pattern length. Each bloom filter scans the streaming 
data and checks the strings of corresponing length. This could 
impose parallelism limits in some virus databases because 
pattern lengths vary from tens to thousands of bytes and there 
are hundreds of possible patterns lengths[4]. Parallel bloom 
filters are implemented on FPGA which cannot realize large-
scale rule database. 

References [3] and [4] provide TCAM-based pattern match 
algorithms that can be used with TCAM. Reference [3] 
achieves optimal functionality and efficiency for deep packet 
filtering with assistance of the “self-study” table which is a 
preprocessing method similar to cache. Reference [3] 
supports indefinite length pattern match, because payload 
fields may be indefinite within the limitation of TCAM width. 
The system has to match data contents with a sliding window. 
The width of the sliding window is determined by the width 
of the field in a rule database, thus it changes dynamically. 
Since the location of pattern within the payload is not known, 
the sliding window must forward one byte per clock exactly 
so as not to miss any matching opportunity. Reference [4] 
presents a TCAM-based pattern-matching algorithm for 
handling both short patterns less than the TCAM width and 
long patterns. In case of the short pattern, one TCAM lookup 
is needed for every byte position in the payload like [3]. 
Given the limited TCAM width, a pattern longer than the 
TCAM width will split into several sub-patterns: the first 
TCAM width prefix patterns and the remaining suffix patterns. 
Assuming TCAM lookup time is 4ns, [4] can support a 
deterministic scan rate of 8bits/4ns = 2Gbps in case of short 
patterns. For long patterns, the speed of pattern-matching will 
be dominated by TCAM lookup time if the TCAM hit rate is 
low and the size of partial hit list table is small. In this case, 
the total time to scan an n-byte packet is 4n ns and the 
matching speed is 8n /4n = 2Gbps [4]. Since 2Gbps will not 
be suitable for multi-gigabit secure routers or IDSs in the 
high-speed network, the capability of supporting multi-gigabit 
scan rate will be essential. Hence, we propose a high-speed 
deep packet inspection algorithm that employs one TCAM 
lookup per multi-bytes of payload by using the variable size 
jumping window instead of ‘the sliding window scheme’1. Fig. 
1 illustrates how to find the pattern “GATT” in the payload; 
the example shows the 6-th segment of the packet payload 
matches the TCAM entry. 
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1 In this paper, the scheme in [3][4] is referred to a ‘sliding window’. 

III. TCAM CHARACTERISTICS 

TCAM is a type of memory that can search multiple items 
simultaneously at a high-speed rate. Each cell in a TCAM 
may have one of three states (0, 1, or ‘don’t care’); a binary 
CAM has only two states (0 or 1). One input may be to search 
multiple TCAM entries because of the ‘don’t care’ state. If 
multiple matches are given, TCAM will return the index of 
the first hit or the indices of multiple hits. Two storage 
locations, data (or key) and mask cells are necessary to save 
three possible states. The mask cell specifies which bits in the 
entry are active, thereby specifying the variable-length prefix. 
TCAM entries are the logical records stored in the data and 
mask cells. The TCAM entry may have associated data stored 
in SRAM attached to the network search machine (NSE) or in 
a separately accessible external memory (e.g., SRAM or 
DRAM). The associated data may be returned as the result of 
a TCAM lookup operation.  

A TCAM-based NSE chip can support the packet-lookup 
speed of 100 ~ 250 million searches per second (MSPS) 
according to its family. It means that the TCAM lookup time 
is about 4 ~ 10 ns. One feature of the NSE chip is to support 
variable word-width searches of 36-, 72-, 144-, and 288-bit 
wide words called the TCAM width. A 9Mbit TCAM has 72-
bit wide 128K entries or 144-bit wide 64K entries. Each of 
NSE devices may be cascaded to extend TCAM spaces. For 
example, IDT75K62134 [14] supports up to eight devices 
through point-to-point cascading. Point-to-point cascading 
allows databases to contain up to 1 million 72-bit entries. 

IV. THE PROPOSED ALGORITHM 

A. Algorithm 

As stated above, the sliding window scheme supports one 
TCAM lookup by one shift; this increases the number of 
TCAM lookups. In order to achieve parallelism for payload 
inspection, we devise an ‘m-byte jumping window’ scheme 
that matches m-byte payload segment with every m-th 
jumping windows as illustrated in Fig. 2. We guess that the 
scanning time of the jumping window is superior to that of 
sliding window. We describe the creation of TCAM entries 
from a pattern in order to perform the jumping-window 
scheme as follows. 

Let w be the TCAM width and let - be ‘don’t care’ state of 
TCAM. Given the pattern of “GATT” the position of the 
pattern in the payload is one of “GATT,” “-GATT,” “-- 

Fig. 1. TCAM-based packet inspection with “sliding window” 

Fig. 2. Example of jumping window scheme (m = 4) 
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GATT,” …, “(w -1)-GATT.” When w is 4, the pattern may be 
found at the different position of the payload such as 
“GATT,” “-GATT,” “--GATT”, or “---GATT.” (shown in Fig. 
3) We put the above derived patterns into the TCAM table. 
Then, a TCAM lookup operation is carried out for every 
segment of w bytes called a jumping window for a packet 
payload. Usually, the width of the TCAM, which will be used 
for matching the pattern in a parallel way, is fixed. Therefore, 
if the TCAM width is smaller than the pattern, we have to 
split a long pattern into shorter sub-patterns with the same 
length of the TCAM width.  

If one pattern splits into several sub-patterns, a pattern-
matching operation will be completed when all sub-patterns 
are matched to the TCAM entries in series. Hence, for the 
matching operation of multiple sub-patterns, a sub-pattern 
matching function requires the result of the previous sub-
pattern matching operation. To increase the speed of 
searching, we employ a hash function to find the result of the 
previous sub-pattern matching operation. The value of the 
hashing function will be stored in the associated data. The 
hash value of associated data is used as a key for TCAM 
lookup of the next sub-pattern. The key for TCAM lookup is 
the combination of the previous hash value and the sub-
pattern. The TCAM window, m, is the length of sub-pattern. 
In other words, we compute m by subtracting the length of the 
hash value from w. Fig. 4 shows continuity of sub-patterns 
with hash. A pattern-matching operation should be done, 
because all sub-patterns are matched to TCAM entries in 
series when the last hash value of associated data is zero. We 
set the hash value of key for TCAM lookup of the first sub-
pattern to zero. For example, <hash0> in Fig. 4 is zero, 
because it is the hash value of first sub-pattern. <hash1> of 
associated data is obtained by hashing with the sub-pattern, “-
GAT”. It is used as a key for TCAM lookup of the next sub-
pattern, “T---.” Therefore, the key of the sub-pattern “T---” 
following “-GAT” is combination of the previous hash value, 
<hash1>, and the sub-pattern, “T---.” 

Our algorithm consists of two phases of a preprocessing 
stage and a scanning stage. At the first stage, the set of 
patterns are preprocessed to create TCAM entries. Then, at 
the second stage, payloads are scanned to detect malicious 
attacks. 

B. The Preprocessing Stage 

We create TCAM entries from the set of patterns in the 
preprocessing stage. The algorithm uses symbol notation of 
Table 1 in the preprocessing stage. The algorithm picks out 
the pattern Pi from the signature rule to create TCAM entries 
in order to match the TCAM in parallel. Algorithm 1 shows 
the algorithm of TCAM entry creation from Pi.  

 

4 bytes

GATT
-GAT

TCAM key & mask array

T---
--GA
TT--
---G
ATT-

(TCAM width)

Pattern :  GATT 

~ ---G ATT~ 

~--GA TT~ 

~GATT~ 

~-GATT~ 

Matched  
Packet :   

 

Fig. 3. TCAM entry creation through (0 ~ w-1) shift-right operations 

 Key & Mask Associated data 
Hash Sub_pattern hash 

<hash0> GATT 0 
<hash0> – GAT <hash1>=hash(<hash0>, “GAT”)
<hash1> T – – – 0 
<hash0> – – GA <hash2>=hash(<hash0>, “GA”) 
<hash2> TT– – 0 
<hash0> – – – G <hash3>=hash(<hash0>, “G”) 
<hash3> ATT– 0 

… … … 
 

Fig. 4. Continuity of sub patterns with hash 

TABLE 1. Notations used in the preprocessing stage 
w TCAM width 

m Window size 
H

0
 Initial hash value, 0 

P
i
 i-right shifted pattern  ( 0• i • m–1) 

S
j
 Sub-patterns which are derived from P

j
, 

the size of S
j
 is equal to m ( j • 1) 

H
j
 Hashing with concatenation H

j-1 
of 

 
S

j
  

hash(H
j-1

S
j
) 

K
j
 key which is derived from S

j (= H
j-1

S
j
) 

 
Algorithm 1. TCAM entry creation algorithm for a pattern 

for each pattern  
for each i-shifted pattern Pi 

if(length (Pi ) <= m) { 
S1 = Pi(m - length (Pi )) ; 
create key H0S1 and associated hash 0; }  

else { 
left_length = length (Pj ), j = 1; 
while(left_length > m) { 

    fetch m-byte Sj ; 
    calculate hash Hj = hash(Hj-1, Sk); 

create key Hj-1Sj and associated hash Hj ; 
        left_length = left_length – m; j ++;  } 

calculate hash Hj = hash(Hj-1Sj) ; 
create key Hj-1Sj and associated hash 0 

 

C. The Scanning Stage 

We now describe the scanning stage in more detail and 
give algorithm for it. The algorithm uses the symbol notation 
of Table 2. The m-byte segment of an input packet payload is 
denoted as T[i..i+m–1] (i • 1). A key of TCAM lookup for the 
payload, T[i..i+m–1], is the combination of the previous hash 
value and T[i..i+m–1]. The previous hash value is hashed 
with T [0..i–1] or the initial hash value if there is no previous 
sub-pattern matching. When T[i..i+m–1] matches to one of  
TCAM entries, we combine the associated hash value of 
T[i..i+m–1] with the next sub-pattern, T[i+m..i+2m–1, in 
order to create a key for the TCAM lookup of the payload, 
T[i+m..i+2m–1]. If T[i+(j–1)m..i+jm–1] matches to one of 
TCAM entries and the associated hash value is zero, finding 
the pattern will be completed at the position of a packet 
payload, T[i..i+jm–1]. 

Let us illustrate an example for explaining the jumping-
window pattern-matching scheme. We can create shifted sub-
patterns from a pattern, “GATT” and put them into the 
TCAM table as shown in Fig. 5. When m is 4, we fetch a 4-
byte character with 4-byte jumping window from a packet pa- 
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TABLE 2. Notations used in scanning stage 
T The total payload of a packet 
T[i..j] A continuous byte segments belong to a single packet
n Length of T 
H[] Hash list 
NH[] Next hash list 
assoc_hash Hash from associated data when TCAM lookup is 

successful 

 Algorithm 2. Scanning algorithm 

left_length = n; i = 1; 
H[0] = 0; NH[0] = 0; 
while(left_length > 0) { 

fetch m-byte T[i..i+m-1] ; 
    j = 0; k=1; 
    while(H[j] != NULL) { 

lookup_tcam(H[j], T[i..i+m-1]); 
   if(match) { 
       if(associ_hash == 0) 
            pattern-matching successful 
            else      /* need continuous match */ 
            NH[k++] = associ_hash ; 
   } 
        j++ ; 
     } 
     copy(H, NH ); reset(NH); 
     i = i+m; left_length = left_length – m; 
} 

 

  

yload. Next, we make a key for TCAM lookup concatenating 
the initial hash value, H0, and fetched characters. The 
associated hash value H1, which is the result of hashing H0 and 
shifted sub-pattern ,“-GAT,” is returned, when the key created 
from the third 4-byte jumping window, “CGAT” matches to 
one of TCAM entries. Now, we form the key with H1 and the 
next 4-byte jumping window, “TCTA,” in order to search the 
“-GATTCTA” string from the TCAM. It matches to the 
TCAM entry which is the last sub-pattern of “-GATT---.” 
Therefore, we obtain the zero value as the result of TCAM 
lookup, which means that the input packet payload includes 
the pattern, “GATT.” 

V. PERFORMACE ANALYSIS AND SIMULATION 

A. Analysis of TCAM Lookup Time 

Let t be the TCAM lookup time, L be the average length of 
payloads, and l be the length of pattern. The scanning time of 
the sliding window scheme is equal to the product of the 
number of TCAM lookups and the TCAM lookup time, i.e., 
Lt. Our algorithm uses the key of TCAM lookup as the 
combination of the hash value and m-byte jumping window 
from the payload. Namely, it processes m characters of the 
payload per one TCAM lookup operation. Therefore, the 
scanning time can be derived as Lt/m. 

It is assumed that the payload length of an IP packet, L 
varies from zero to 1,460 bytes. In addition, the TCAM 
lookup time, t, is assumed to be a constant. Then, m-byte 
jumping window will decide the scanning time. If the value of 
m is large enough, the scanning time will be decreased to 
provide multi-gigabit payload inspection. However, the 
number of TCAM entries will be increased. The number of 
TCAM entries, namely e, created from one pattern is given as 
follow: 

 

AGCT  AGTT  CGAT   TCTA   CCGA  TACC  TGAT GCGC 

AGCT AGTT CGAT TCTA CCGA TACC TGAT GCGC

GATT 

pattern

H0---G
H0--GA
H0-GAT
H0GATT
H3ATT-
H2TT--
H1T---Shifted 

Sub-pattern 

4-byte 
jumping 
window m 

w 

TCAM 

H0---G
H0--GA
H0-GAT
H0GATT
H3ATT-
H2TT--
H1T---

H0---G 
H0--GA 
H0-GAT 
H0GATT 
H3ATT- 
H2TT-- 
H1T--- 

H0AGCT
Key for 
TCAM 
lookup 

H0CGAT H1TCTA 

TCAM Hit
Return H1 
H1= hash(H0 | -GAT) 

TCAM Hit 
Return 0 
Successful match 

Payload 

H1 is used as
 Key for next 
TCAM Lookup

  
Fig. 5. Jumping-window with hash values 

e = m (l / m + 1) + (l % m – 1) 

Fig. 6 compares the throughput of the proposed algorithm 
with the sliding window scheme when the length of a packet 
is 1518 bytes. The maximum-length packet is assumed 
because it requires the worst case of TCAM lookups for 
scanning the payload. 0.81 million packets per second (Mpps) 
throughput is required to support 10Gbps. The sliding 
window scheme performs 0.17Mpps throughput, but it cannot 
achieve the performance of 10Gbps. Its throughput does not 
change as m increase. In contrast, our algorithm, the jumping 
window scheme can support the throughput of 10Gbps. The 
throughput in our algorithm will be increased as m becomes 
high because the scanning time can be decreased. Fig. 7 
compares the number of TCAM lookups of the proposed 
algorithm with sliding window scheme when m is 7. The 
number of TCAM lookups of sliding window increases 
rapidly as the packet length increases, while that of our 
algorithm increases slowly. 
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Fig. 6. Packet inspection throughput of jumping and sliding windows 
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Fig. 7. TCAM accesses of jumping and sliding windows 
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B. Simulation Results 

We considered signature sets from Snort 2.1.0 [15] and 
created TCAM entries from them. The signature sets have 
2,394 rules and 2,247 patterns. We used real packet traces 
with libpcap [16]. The number of total packets is 10,000 and 
the average packet payload length is 690 bytes. Fig. 8 shows 
the number of TCAM lookups and TCAM sizes 
accommodate all the patterns under different m-byte jumping 
window settings. We observed about 690/m TCAM lookups 
per one packet in Fig. 8, because the average length of packet 
payload is 690 bytes. As m increases, the number of TCAM 
lookups has been reduced, because one TCAM lookup has 
been performed for each m–byte jumping window. However, 
as m increases, the number of TCAM entries becomes high 
because of creation of staggered sub-patterns from a pattern. 
Since TCAM supports several TCAM width for example 36-, 
72-, 144-, and 288-bit wide words, TCAM sizes increase 
rapidly when the size of jumping window is 8 and 17. Our 
algorithm can achieve maximum performance with 16-byte 
jumping window where TCAM size is 9Mbit. 

We measured the number of TCAM lookups of sliding 
window and 7-byte jumping window for each real packet as 
shown in Fig. 9. The number of TCAM lookups of sliding 
window for each packet is shown in Fig. 7. 

VI. CONCLUSION 

In this study, we have presented a multi-gigabit pattern-
matching algorithm for the high-speed network. The TCAM- 
based deep packet inspection algorithm developed in this pap 
er uses a jumping window scheme, which is supported by 
staggered sub-patterns and hash function to reduce the 
number of TCAM lookups. As shown in the simulation 
results, the number of TCAM lookups was decreased by m 
times using m–byte jumping window. Our proposed scheme 
can scan thousands of patterns simultaneously at the high 
performance. We evaluated its performance using real packet 
traces and it was shown that our method is suitable for a 
multi-gigabit secure router that provides network intrusion 
detection functions. 
In this paper, we described the algorithm for multiple pattern-
matching. Since the signature such as Snort rule contains 
multiple patterns, we must match multiple patterns to detect 
one signature for a packet. In order to detect multiple patterns 

Fig. 8.  The number of TCAM lookups and the size of TCAM in m-
byte jumping window  
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Fig. 9. The simulation result of TCAM lookups for packet trace 

 
belonging to one signature, our algorithm can be extended by 
creating a rule table and a matching table We have 
implemented the proposed algorithm on the intel IXDP28xx 
platform [17]. Our proposed alogirthm scanned for packet  
payload at 1Gbps with one micro-engine that has single 
thread. We expect 10Gbps rate through code optimization and 
multiple micro-engines that have multiple threads. We’ve 
proven the feaiblity of the proposed algorithm with our 
experimental implementation that runs on the IXDP28xx 
platform. 
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